SIDDHARTH INSTITUTE OF ENGINEERING \& TECHNOLOGY:: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road - 517583 OUESTION BANK (DESCRIPTIVE)	
Subject with Code: Advanced Structural Analysis (20CE1001) Year \& Sem: I-M.Tech \& I-Sem	Course \& Branch: M.Tech - SE Regulation: R20

UNIT -I
 INTRODUCTION TO MATRIX METHODS OF ANALYSIS

1	Explain briefly about flexibility matrix method of Analysis	[L2][CO1]	[12M]
2	a) Find the flexibility matrix of the cantilever shown in Figure 2.1 EI is constant.	[L1][CO1]	[12M]
	b) For the simply supported beam shown in Figure 2.2. Develop the flexibility matrix Figure 2.2	[L3][CO1]	[12M]
3	Develop the flexibility matrix for the cantilever with coordinates as shown in Figure 2.3 Figure 2.3	[L3][CO1]	[12M]
4	Develop the flexibility matrix for the cantilever beam with reference to the coordinates shown in Figure 2.4 Figure 2.4	[L3][CO1]	[12M]

5	Develop the flexibility matrix for structure with coordinates shown in Figure 2.5 Figure 2.5	[L3][CO1]	[12M]
6	Explain briefly about Stiffness matrix method of Analysis	[L2][CO1]	[12M]
7	Develop the stiffness matrix for the end-loaded prismatic member AB with reference to the Coordinates shown in Figure 2.6 Figure 2.6	[L3][CO1]	[12M]
8	a) Develop the stiffness matrix of the beam as shown in Figure 2.7 with 2 coordinate system Figure 2.7	[L3][CO1]	[6M]
	b) Develop the stiffness matrix of the beam as shown in Figure 2.8 with respect to the 2 degree of freedom given Figure 2.8	[L3][CO1]	[6M]

9 a) Develop the stiffness matrix of the beam as shown in Figure 2.10 with respect to the 4 degree of freedom given
[L3][CO1] [6M]

Figure 2.10
b) Generate the stiffness matrix for the structure with coordinates as shown in Figure 2.11

Figure 2.11
10 Generate the stiffness matrix for the structure with coordinate as shown in
Figure 2.12 EI is constant

Figure 2.12

UNIT-II

ANALYSIS OF CONTINUOUS BEAMS \& ANALYSIS OF TWO-DIMENSIONAL PIN JOINTED TRUSSES

1	Analyze the continuous beam shown in Figure 3.1 by displacement method EI is constant Figure 3.1	[L4][CO2]	[12M]
2	Analyze the continuous beam shown in Figure 3.2 by displacement method Figure 3.2	[L4][CO2]	[12M]
3	Analyze the continuous beam shown in Figure 3.3 by Flexibility method. The downward settlement of supports B and C in $\mathrm{kN}-\mathrm{m}$ are 1500/EI and 750/EI. Figure 3.3	[L4][CO2]	[12M]
4	Analyze the continuous beam shown in Figure 3.4, if the downward settlement of supports B and C are 12 mm and 6 mm respectively. Given $\mathrm{EI}=20 \times 10^{12} \mathrm{~N}-\mathrm{mm}^{2}$.Use Flexibility matrix method Figure 3.4	[L4][CO2]	[12M]

Figure 3.5
6 Using flexibility matrix method for the beam shown in Figure 3.6 and draw shear force and bending moment diagrams, EI is Constant

Figure 3.6

7 Develop the flexibility matrix for the pin-jointed plane frame with reference to coordinates $1 \& 2$ shown in Figure 3.7 The numbers in parentheses are the crosssectional areas of the members in mm^{2}

Figure 3.7

8 Figure 3.8 shows a jip-Crane carrying vertical load of 10 kN at A. Determine the deflection of Joint A. Hence calculate the forces in members AB\& AC. The crosssectional area in mm^{2}. Take $\mathrm{E}=200 \mathrm{kN}-\mathrm{mm}^{2}$.

9	Analyze the pin-jointed structure shown in Figure 3.9 by flexibility matrix method. The areaof each member is 200 mm 2 . Take $\mathrm{E}=200 \mathrm{KN} / \mathrm{mm}^{2}$ Figure 3.9	[L4][CO4]	[12M]
10	Analyze the pin-jointed structure shown in Figure 3.10 by Stiffness matrix method. The area of each member is $1000 \mathrm{~mm}^{2}$. Take $\mathrm{E}=200 \mathrm{KN} / \mathrm{mm}^{2}$ Figure 3.10	[L4][CO4]	[12M]

UNIT -III

ANALYSIS OF TWO - DIMENSIONAL PORTAL FRAMES

1	Analyse the rigid jointed plane frame shown in Figure 4.1 by flexibility matrix method. EI is constant throughout	[L4][CO3]	[12M]
2	Analyse the portal frame ABCD shown in figure 4.2 using Force Method	[L4][CO3]	[12M]
3	Analyze the frame shown in figure 4.23 by force method.	[L4][CO3]	[12M]

4	Analyze the portal frame shown in figure 4.4 by displacement method	[L4][CO3]	[12M]
5	Analyze the frame shown in figure 4.5 by displacement method.	[L4][CO3]	[12M]
6	Analyze the portal frame shown in figure 4.6 by force method.	[L4][CO3]	[12M]
7	Determine the stiffness matrix for the portal frame shown in figure 4.7	[L4][CO3]	[12M]

8	Analyze the portal frame shown in figure 4.8 by flexibility method.	[L4][CO3]	[12M]
9	Calculate the force matrix and also draw the bending moment diagram for the following frame shown in figure 4.9	[L3][CO3]	[12M]
10	Calculate the displacement matrix for the following frame shown in figure 4.10. And also draw the bending moment diagram.	[L3][CO3]	[12M]

UNIT -IV
 SOLUTION TECHNIQUES

1	A system of linear algebraic equations is given below. Obtain the solution by Cholesky method. $\begin{gathered} x+2 y-3 z=7 \\ 3 x+2 y+2 z=-5 \\ 4 x-y+5 z=5 \end{gathered}$	[L2][CO6]	[12M]
2	Solve the following system of equations using Gauss elimination method $\begin{gathered} -4 x+y+10 z=21 \\ 5 x-y+z=14 \\ 4 x+6 y+7 z=12 \\ \hline \end{gathered}$	[L3][CO6]	[12M]
3	List out and explain the direct methods for solving linear equations.	[L2][CO6]	[12M]
4	Determine the solution by using Gauss elimination method. $\begin{aligned} 2 x_{1}-2 x_{2}+4 x_{3} & =-3 \\ 2 x_{1}+3 x_{2}+2 x_{3} & =5 \\ -x_{1}+x_{2}-x_{3} & =1 \end{aligned}$	[L3][CO6]	[12M]
5	Explain briefly about a. Cholesky Method b. Band Matrix and Semi band width	[L2][CO6]	[12M]
6	Explain briefly about a. Gauss elimination method. b. Solution of linear simultaneous equations.	[L2][CO6]	[12M]
7	Explain briefly about a. Matrix inversion method. b. Static Condensation	[L2][CO6]	[12M]
8	Explain briefly about a. Frontal solution technique. b. Direct inversion method.	[L2][CO6]	[12M]
9	Obtain the solutions of the following system of simultaneous equation by method of matrix inversion. $\begin{aligned} & 2 x_{1}+6 x_{2}+2 x_{3}+4 x_{4}=40 \\ & 6 x_{1}+3 x_{2}-2 x_{3}-3 x_{4}=-1 \\ & 2 x_{1}-2 x_{2}+5 x_{3}-x_{4}=2 \\ & 4 x_{1}-3 x_{2}-x_{3}+4 x_{4}=9 \\ & \hline \end{aligned}$	[L2][CO6]	[12M]
10	Explain briefly about Frontal solution technique and static condensation	[L2][CO6]	[12M]

UNIT -V
 NONLINEAR ANALYSIS OF STRUCTURES

1	Derive the equation of geometrical stiffness for beam elements?	[L3][CO5]	[12M]
2	Determine the influence of a constant axial force on transverse vibrations of beams?	[L3][CO5]	[12M]
3	Write about nonlinear structural behavior?	[L1][CO5]	[12M]
4	Explain nonlinear theories for structural components.	[L2][CO5]	[12M]
5	a) Write about Geometric nonlinearities.	[L1][CO5]	[6M]
	b) Explain inelastic analysis and creep.	[L2][CO5]	[6M]
6	Determine the stability analysis of a simple truss using displacement method.	[L3][CO5]	[12M]
7	Derive the equation of geometrical stiffness for bar elements?	[L3][CO5]	[12M]
8	Determine the influence of a constant axial force on a beam column which is subjected to axial load P.	[L3][CO5]	[12M]
9	Determine the stability analysis of a simple truss using Force method.	[L3][CO5]	[12M]
10	Determine the influence of an axial load in a beam column	[L3][CO5]	[12M]

PREPARED BY: Ms. C. SAILAJA ASST. PROFESSOR, SIETK

