

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code: Advanced Structural Analysis (20CE1001)

Year & Sem: I-M.Tech & I-Sem

Course & Branch: M.Tech - SE

Regulation: R20

UNIT –I INTRODUCTION TO MATRIX METHODS OF ANALYSIS

Course Code: 20CE1001

5	Develop the flexibility matrix for structure with coordinates shown in Figure 2.5	[L3][C01]	[12M]
	$1 \xrightarrow{2} l \xrightarrow{3}$		
	I I		
	mmm		
	Figure 2.5		
6	Explain briefly about Stiffness matrix method of Analysis	[L2][CO1]	[12M]
7	Develop the stiffness matrix for the end-loaded prismatic member AB with	[L3][CO1]	[12M]
	reference to the Coordinates shown in Figure 2.6		
	3 4		
	1 El Constant (2)		
	Figure 2.6		
8	a) Develop the stiffness matrix of the beam as shown in Figure 2.7 with 2 coordinate system	[L3][CO1]	[6M]
	2		
	A ℓ B		
	Figure 2.7		
	b) Develop the stiffness matrix of the beam as shown in Figure 2.8 with respect to the 2 degree of freedom given	[L3][CO1]	[6M]
	······································		
	l		
	EI = constant Figure 2.8		

R20

UNIT-II

ANALYSIS OF CONTINUOUS BEAMS & ANALYSIS OF TWO-DIMENSIONAL PIN JOINTED TRUSSES

Course Code: 20CE1001

Course Code: 20CE1001		R20	
9	Analyze the pin-jointed structure shown in Figure 3.9 by flexibility matrix method. The area of each member is 200mm2. Take E=200KN/mm ² $A = \frac{30^{\circ}}{5} \frac{45^{\circ}}{60} \frac{60^{\circ}}{5} \frac{45^{\circ}}{5} \frac{5}{m}$ $= \frac{100 \text{ kN}}{200 \text{ kN}}$	[L4][CO4]	[12M]
	Figure 3.9		
10	Analyze the pin-jointed structure shown in Figure 3.10 by Stiffness matrix method.	[L4][CO4]	[12M]
	The area of each member is 1000 mm^2 . Take E= 200KN/mm^2		
	$ \begin{array}{c} B \\ 45^{\circ} \\ 70^{\circ} \\ 125 \text{ kN} \end{array} $		
	Figure 3.10		

UNIT –III ANALYSIS OF TWO - DIMENSIONAL PORTAL FRAMES

UNIT –IV

SOLUTION TECHNIQUES

1	A system of linear algebraic equations is given below. Obtain the solution	[L2][CO6]	[12M]
	by Cholesky method. $r_{1} = 2r_{1} = 2r_{2}$		
	x + 2y - 3z = 7		
	5x + 2y + 2z = -5		
	4x - y + 3z = 3		
2	Solve the following system of equations using Gauss elimination method	[L3][CO6]	[12M]
	-4x + y + 10z = 21		
	5x - y + z = 14		
2	4x + 6y + 7z = 12		[10]
3	List out and explain the direct methods for solving linear equations.	[L2][C06]	[12][1]
4	Determine the solution by using Gauss elimination method.	[L3][CO6]	[12M]
	$2x_1 - 2x_2 + 4x_3 = -3$		
	$2x_1 + 3x_2 + 2x_3 = 5$		
	$-x_1 + x_2 - x_3 = 1$		
5	Explain briefly about	[L2][CO6]	[12M]
	a. Cholesky Method		
	b. Band Matrix and Semi band width		
6	Explain briefly about	[L2][CO6]	[12M]
	a. Gauss elimination method.		
	b. Solution of linear simultaneous equations.		
7	Explain briefly about	[L2][CO6]	[12M]
	a. Matrix inversion method		
	b. Static Condensation		
8	Explain briefly about	[L2][CO6]	[12M]
	a. Frontal solution technique.		
	b. Direct inversion method.		
9	Obtain the solutions of the following system of simultaneous equation by method of	[L2][CO6]	[12M]
	matrix inversion.		L J
	$2x_1 + 6x_2 + 2x_3 + 4x_4 = 40$		
	$6x_1 + 3x_2 - 2x_3 - 3x_4 = -1$		
	$2x_1 - 2x_2 + 5x_3 - x_4 = 2$		
	$4x_1 - 3x_2 - x_3 + 4x_4 = 9$		
10	Explain briefly about Frontal solution technique and static condensation	[L2][CO6]	[12M]

UNIT –V NONLINEAR ANALYSIS OF STRUCTURES

1	Derive the equation of geometrical stiffness for beam elements?	[L3][CO5]	[12M]
2	Determine the influence of a constant axial force on transverse vibrations of beams?	[L3][CO5]	[12M]
3	Write about nonlinear structural behavior?	[L1][CO5]	[12M]
4	Explain nonlinear theories for structural components.	[L2][CO5]	[12M]
5	a) Write about Geometric nonlinearities.	[L1][CO5]	[6M]
	b) Explain inelastic analysis and creep.	[L2][CO5]	[6M]
6	Determine the stability analysis of a simple truss using displacement method.	[L3][CO5]	[12M]
7	Derive the equation of geometrical stiffness for bar elements?	[L3][CO5]	[12M]
8	Determine the influence of a constant axial force on a beam column which is	[L3][CO5]	[12M]
	subjected to axial load P.		
9	Determine the stability analysis of a simple truss using Force method.	[L3][CO5]	[12M]
10	Determine the influence of an axial load in a beam column	[L3][CO5]	[12M]

PREPARED BY: Ms. C. SAILAJA ASST. PROFESSOR, SIETK